pyrk.materials.sodium module

class pyrk.materials.sodium.Sodium(name='sodium')[source]

Bases: materials.material.Material

This class represents Sodium. It inherits from the material class and possesses attributes intrinsic to flibe.


Sodium density as a funciton of T. [kg/m^3]

The relation is

\[\begin{split}\rho_l &= \rho_c + f(1-T/T_c) + g(1-T/T_c)^h\\ p_c &= 219 [kg/m^3]\\ f &= 275.32 [-]\\ g &= 511.58 [-]\\ h &= 0.5[-]\end{split}\]

This is based on It is valid between the melting point and the critical point

\[t_m = 371.0K\]
\[t_c = 2503.7K\]

Specific heat capacity of Sodium [J/kg/K] actually depends on temperature pretty strongly.

TODO, Issue #4 The CODATA equation gives the relation:

\[\begin{split}c_p &= 1.6582 - 8.4790\times10{-4}T &+ 4.4541times{-7}T^2 \\ &- 2992.6\times T^{-2}\end{split}\]

Below is a constant estimate of sodium cp at temperatures around 400C based on table 1.1-5 in


Sodium thermal conductivity in [W/m-K] TODO, Issue #3

\[\begin{split}k &= 124.67 - 0.11381\times T &+ 5.5226 \times 10^{-5}T^2 &- 1.1842\times 10^8T^3\end{split}\]

Below is an estimate of sodium k_th at temperatures around 400C based on table 2.1-1 in

(but, note that wikipedia gives it as 142 W/m-K...)

class pyrk.materials.sodium.SodiumDensity[source]

Bases: density_model.DensityModel

hornung(temp=<Quantity(0.0, 'kelvin')>)[source]

In the hornung model, K. Hornung [Hornung, 1985] used the available data on the sound velocity and the density of Na to determine its adiabatic and isothermal compressibility.

Parameters:temp (Quantity (units of kelvin)) – the temperature of the sodium
rho(temp=<Quantity(0.0, 'kelvin')>)[source]